

CICS Transactions Measurement with no Pain

Prepared by Luiz Eduardo Gazola
4bears - Optimize Software, Brazil

December 6 – 10, 2010
Orlando, Florida USA

This paper presents a new approach for measuring CICS transactions reported on
SMF type 110 Performance records throughout the use of z/OS Dynamic Exits facility
to buffer the collected data in memory. The data is downloaded on real-time basis to
SQL databases on open platforms via TCP/IP protocol. This innovative approach
totally eliminates the need for DASD space and its associated I/O demands on the
mainframe.

Introduction
CICS is by far the most commonly used IBM transaction monitor often supporting the execution of thousands of
transactions per second and is present in virtually all large IT shops and data centers worldwide. In many online
environments, CICS regions consume more CPU resources than any other component on the system however it lacks
sufficient measurement facilities to address the following critical issues adequately:

 Average transaction response time;

 Resource usage; and

 Chargeback.

The following charts show examples of the typical behavior of seven different applications (transactions) during a 4-
month period. Figure 1 presents the number of transactions by month, and figure 2 presents average transaction
response times.

 Figure 1 – Transactions per month

 Figure 2 – Response times

Indeed, CICS measures the execution of each transaction execution in great detail; however, it does not consolidate or
report the information so IT managers end up requiring additional software to measure and analyze such transactions.

Figure 3 shows a list of commonly used CICS monitoring and reporting software:

Figure 3 – CICS measuring products

Product Vendor

CICS Performance Analyzer (CICS PA) IBM

Tivoli Decision Support for z/OS IBM

MXG Software Merrill Consultants

SAS IT Resource Manager SAS Institute

CA JARS Resource Accounting Computer Associates

CA MICS Resource Management Computer Associates

Unfortunately, all these products have the same problem: they require a lot of mainframe disk space and also use a
considerable amount of I/O channel bandwidth for data movements in order to perform the measurements and
consolidate the information.

The reason for the high volume of disk required is that CICS reports the details of each transaction execution such as
date and time, issuer and CPU time usage, via the SMF type 110 records. Depending on the volume of transactions,
this log can require an enormous amount of space just for the SMF raw records. In addition, consolidation of the
information often demands a similar amount of DASD resources.

It is not surprising then that in the largest shops, these data requirements have become a storage management
nightmare, requiring such a long time to process on daily basis that most IT managers prefer not to process this kind of
information.

This paper proposes an alternative method to store and process this information out of the mainframe environment. In
this approach, the records are intercepted before they are written to disk (while they are still in memory), then sent
directly to a database on a less expensive platform.

Proposed Model
The following sections describe the process used to intercept the SMF records as they are created, through the
implementation of SMF exits. The SMF exit copies the contents of the records to another address space in order
to process them in parallel, so there is no additional burden on the CICS regions due to I/O delays or any
additional CPU consumption involved for the record processing. The exit also tells to SMF to discard the record.

The following diagram illustrates this process:

Figure 4 – Proposed model diagram

SMFEWTM DBcopy insertCICS SMF

exit
Data Loaderprocess

Record

Processor

A.S.
TCP/IP

circular buffer

The record processor address space accepts the intercepted records and sends them to another process on the
remote machine where they are inserted directly into the database.

CICS Monitoring Facility (CMF)
CICS uses the SMF infrastructure to record all the transactions through the CICS Monitoring Facility (CMF) which
create SMF type 110 Performance class records with the details of many transactions. The MCT (Monitoring
Control Table) can be used to select the fields that will be recorded.

There are more than 200 fields which can be select for logging. Figure 5 shows some examples:

Figure 5 – Monitoring field descriptions

ID Mnemonic Description ID Mnemonic Description

1 TRAN Transaction code 71 PGMNAME Program name

5 START Transaction start time 89 USERID User name

6 STOP Transaction end time 167 SRVCLAS WLM service class

2 TERM Terminal identification 7 USRDISPT Elapsed time on CICS

The performance class record is a multiple-transaction record; in other words, it holds as many transactions as
possible provided the record does not exceed the 32 KB length limit. The CMF buffers the transaction counters in
memory until an entire record is complete, then invokes the SMFEWTM macro to write the record.

Selecting a few fields on the MCT to reduce the volume of information saved on SMF can be a good practice. The
default CICS configuration logs 2672 bytes of data per transaction, resulting in 12 transactions per SMF record.
Selecting a smaller set of fields provides the ability to log more than 200 transactions on a single record quite easily.

The monitoring can be activated dynamically through the following transaction: CEMT SET MONITOR ON PERF.

SMF data collection
The System Management Facilities (SMF) is a z/OS component responsible for centralizing the records from various
system components in a complex infrastructure where each component generates pre-formatted records. SMF then
time-stamps the records and buffers them in memory. The records are written to VSAM datasets known as SYS.MANx
files. When these files become full, they are copied (dumped) to sequential datasets which can be retained for many
years.

Figure 6 illustrates a typical SMF processing flow:

Figure 6 – SMF data flow

events

JES2

RACF

CICS

DB2

others

I/O

SYS.MAN1

SYS.MANn

SMF

datasetsI/O I/O DataI/O I/O ...SMF
SMF Dump

(IFASMFDP)
SMF Extractor

 The logging components format a record according to its type and pass the record the SMF via the
SMFEWTM macro;

 The SMF exits (IEFU8x) timestamp the records and write them to the SMF buffer in memory;

 The records are written to the VSAM datasets (SYS.MANx);

 When the SYS.MANx dataset is full, SMF switches to a new SYS1.MANx dataset and sends a console
message to inform the operator that the file can be copied;

 The SMF Dump utility (program IFASMFDP) copies the VSAM dataset records to a sequential file (SMF dump
files), in VBS (variable blocked spanned) format and empties the VSAM dataset for reuse;

 The SMF dump files are normally kept for very long periods of time.

The SMF records are the raw measurement and recording source for many software products and in-house
applications and such records are usually read many times and retained for many years.

Some IT shops consolidate the SMF records on daily and monthly basis, merging all records of a certain period
and LPARS on the same dataset to facilitate further data handling.

Dynamic Exits and SMF
The Dynamic Exits Facility is another MVS component responsible for managing the connection of installation exit
programs to their exit entry points dynamically and in a uniform way. The Dynamic Exits perform the following
functions:

 Dynamic adding and removing of exit modules;

 Managing the chain of exit modules for each exit;

 Deactivating the exit module when it abends.

The exit module can be dynamically activated and deactivated through the SETPROG EXIT console command or
programmatically using the CSVDYNEX macro.

SMF has three exits which are called every time the SMF writes a record: IEFU83, IEFU84 and IEFU85. These
exits receive the entire SMF record and have the ability to alter its contents or even discard the record:

Figure 7 – SMF Records Exits

Exit name Calling macro Entry method

IEFU83 SMFWTM Issue an SVC

IEFU84 SMFEWTM Branch mode from primary address space

IEFU85 SMFEWTM Branch mode from cross-memory

CMF issues the SMFEWTM macro in primary mode when a full record is complete in its buffer, so in order to
intercept the performance records, the necessary code must be included in the IEFU84 exit. Figure 8 describes
the available dynamic SMF exits for shops containing different SMF configurations.

Figure 8 – IEFU84 names

Exit name Used for:

SYS.IEFU84 Default exit
SYSJES2.IEFU84 CICS started as batch with SUBSYS(JES2) on

SMFPARMxx
SYSSTC.IEFU84 CICS started as started task and SUBSYS(STC)

specified on SMFPRMxx

Keep in mind that the exit routine code has many restrictions and must be fast enough so as not to impact CICS due to
processing delays. Normally, the best practice is to copy the contents of the record and process it in another address
space.

Perhaps the easiest way to pass the record to another address space is via the buffers on Common Storage Area
(CSA) which are common to all address spaces. Thus, a circular buffer in Extended CSA can be used to hold
records temporarily until they are ready for processing.

The exit module should verify that the record is the performance class record, and if so, copy the contents to the
buffer in common storage and suppresses record writing by placing a return code of X’04’ in R15. Figure 9
illustrates the portions of the SMF type 110 records used to determine its subtype and class.

Figure 9 – Monitoring record

Field Value

SMF Type 110
SMF Subtype 1 – Monitoring
Monitoring class 3 – Performance class

Processing the Records
The performance records are multi-transaction records in which the field layout depends on the configuration
defined on the Monitoring Control Table (MCT). They do not have any field delimiters and depend on the
Dictionary record for their mapping.

The Dictionary record is also written as an SMF type 110 record. Every time the CICS starts or when the
monitoring process is activated, a dictionary record is written. Dictionary records describe the fields present on the
record, their type, size and offset. Therefore processing any performance record requires the corresponding
dictionary record.

The dictionary record is identified by three key information fields: CICS name, CICS version and MCT modification
version. Thus, changing the monitored fields in the MCT creates a new dictionary segment. Hopefully, every
performance record will contain this key information. The following table describes the dictionary record key
information fields:

Figure 10 – Dictionary record key fields

Field Name Description

SMF Type SMFMNRTY 110
SMF Subtype SMFMNSTY 1 – Monitoring
Monitoring Class SMFMNCL 1 – Dictionary record
CICS name SMFMNPRN Generic CICS APPLID
CICS version SMFMNRVN CICS revision number
CICS modification SMFMNMFL Version of the MCT layout

The process can be simplified by using a common dictionary (MCT definition) for all CICS or alternatively, by
saving all dictionary records in a dataset and loading them when processing the performance records.

The records can either be processed on the mainframe before sending them to the remote system, or be sent in
binary format and then processed remotely. If they are processed remotely, it will be necessary to perform some
string conversions from EBCDIC to ASCII and also send the dictionary records. Processing them remotely can
save some CPU cycles involved with converting the fields.

Data transfer
The record processor runs in its own address space and can easily transfer the intercepted records to the remote
system. One should be always cautious, however, to maintain enough space in the circular buffer into which the
SMF exit writes the intercepted records so as avoid losing records.

The main idea is to send the records directly to the remote system without any disk access, such as what usually
happens when data is written to disk. The file transfer process must them read the data from disk and send it to
the remote file transfer program which writes the data on the remote disk where the data loader program reads the
data again:

Figure 11 – File transfer model

Record

Processor
save File Transferread

send

File Transfer save read Data Loader DBinsert

A much better solution would be a messaging facility such as IBM MQ-Series where the record processor can
open a queue and send the data directly to the remote program, even in binary format. Also, protocols,
connections and parallel producers and consumers on either side become non-issues.

Remote system
On the remote system, the data loader program should receive the performance records and insert them into the
database. Preparing the records to be inserted in bulk operations will improve performance. Some portability may
be lost, but on the other hand, it is possible to load up to 10 thousand records per second.

Once the data is stored in the database it can easily be grouped into intervals and saved in historical tables. In our
experiments the historical data occupies less than 5% of the original data. The following figure shows an example
of transaction summary:

Figure 12 – CICS transaction summary

Conclusion
Nowadays, most typical mainframe workloads consist of online CICS transactions running around the clock;
however, it is often a daunting and time-consuming task to figure out what is going inside the box. Unfortunately,
most of the traditional measuring solutions add even more stress to the existing workload.

The new approach summarized in this paper has several advantages; substantially alleviating space and channel
bandwidth demands on the DASD infrastructure; loading the transaction logs directly on the database, which is the
best place to store such data; and reducing the CPU workload on the mainframe thus releasing resources that may be
used to process even more CICS transactions.

References

1. MVS System Management Facilities (SMF), IBM Corporation, SA22-7630-15, September 2007.
2. CICS TS for z/OS 4.1: Performance Guide, IBM Corporation, SC34-7033-00, 2009.
3. CICS TS for z/OS: CICS Customization Guide, IBM Corporation, SC34-6429-04, April 2007.
4. z/OS MVS Installation Exits, IBM Corporation, SA22-7593-12, September 2007.
5. MVS Programming: Authorized System Services Reference – Volume I (ALESERV – DYNALLOC), IBM

Corporation, SC22-7609-08.

